Buncombe County Public Sector Solar Initiative

Equipment Cutsheets

Contacts for Manufacturers

Modules

- 1. REC Solar Marty Krapf marty.krapf@recgroup.com
- 2. Trina Solar Adam Jordan adam.jordan@trinasolar.com
- 3. Q-Cell Dawson Rauch <u>dawson.rauch@us.q-cells.com</u>

<u>Inverters</u>

- 1. SolarEdge Sumner Komro <u>sumner.komro@solaredge.com</u>
- 2. SMA www.sma-america.com/contact
- 3. Fronius www.fronius.com/en-us/usa/contact

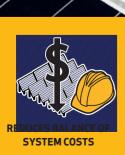
Canopies

1. Quest Renewables – James Keane – <u>james@questrenewables.com</u> Finn Findley – <u>finn@questrenewables.com</u>

Racking

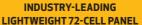
- 1. PanelClaw Joe Gondron <u>igondron@panelclaw.com</u>
- 2. Iron-Ridge Jeff Ryan <u>iryan@ironridge.com</u>
- 3. Aero-Compact Elizabeth Davis Elizabeth.davis@aerocompact.com
- 4. RBI Solar Pat Hudepohl phudepohl@rbisolar.com
- 5. SolarFlexRack Derek Gault dgault@solarflexrack.com

Solar Panels

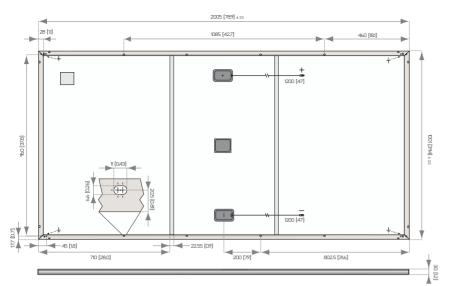


REC TWINPEAK 25 MONO 72 SERIES

PREMIUM SOLAR PANELS 100% MADE IN SINGAPORE


REC TwinPeak 2S Mono 72 Series solar panels feature an innovative design with high efficiency and an industry-leading lightweight, yet robust construction, enabling customers to get the most out of the installation area.

Combined with the product quality and reliability of a strong and established European brand, REC TwinPeak 2S Mono 72 Series panels are ideal for all types of commercial rooftop and utility installations worldwide.



All measurements in mm [in]

ELECTRICAL DATA @ STC	Product code*: RECxxxTP2SM 72						
Nominal Power - P _{MPP} (Wp)	370	375	380	385	390	395	400
Watt Class Sorting - (W)	0/+5	0/+5	0/+5	0/+5	0/+5	0/+5	0/+5
Nominal Power Voltage - V _{MPP} (V)	39.8	40.1	40.3	40.5	40.7	40.9	41.1
Nominal Power Current - I _{MPP} (A)	9.30	9.36	9.43	9.51	9.58	9.66	9.73
Open Circuit Voltage - V _{OC} (V)	47.0	47.4	48.0	48.6	49.2	49.8	50.4
Short Circuit Current - I _{SC} (A)	10.02	10.04	10.05	10.07	10.08	10.09	10.10
Panel Efficiency (%)	18.4	18.7	18.9	19.2	19.4	19.7	20.0

Values at standard test conditions STC (airmass AM 1.5, irradiance 1000 W/m^2 , cell temperature 77°F (25°C). At low irradiance of 200 W/m^2 (AM 1.5 and cell temperature 77°F (25°C)) at least 95% of the STC module efficiency will be achieved. * xxx indicates the nominal power class (P_{MPP}) at STC, and can be followed by the suffix XV for modules with a 1500 V maximum system rating.

ELECTRICAL DATA @ NMOT		Pr	oduct code				
Nominal Power - P _{MPP} (Wp)	276	280	283	287	290	295	298
Nominal Power Voltage - $V_{MPP}(V)$	37.1	37.3		37.7		38.1	38.3
Nominal Power Current - I _{MPP} (A)	7.44	7.49		7.60			7.78
Open Circuit Voltage - $V_{oc}(V)$	43.7	44.1	44.7	45.3	45.8	46.4	46.9
Short Circuit Current-I _{SC} (A)	8.02	8.03	8.04	8.06	8.06	8.07	8.08

Nominal cell operating temperature NOCT (800 W/m², AM 1.5, windspeed 1 m/s, ambient temperature 68°F(20°C).

UL 1703, Fire classification: Type 1 (1500 V XV): Type 2 (1000 V), IEC 61215, IEC 61730, IEC 62804 (PID), IEC 62716 (Ammonia), IEC 61701 (Salt Mist level 6), ISO 9001: 2015, ISO 14001: 2004, OHSAS 18001: 2007

20 year product warranty 25 year linear power output warranty Max. performance degression of 0.5% p.a. from 97.5% in year 1 See warranty conditions for further details.

20.0% **EFFICIENCY**

YEAR PRODUCT WARRANTY

YEAR LINEAR POWER **OUTPUT WARRANTY**

GENERAL DATA

Junction box:

Cell type: 144 half-cut monocrystalline PERC cells 6 strings of 24 cells in series

Glass: 0.13" (3.2 mm) solar glass with anti-reflection surface treatment

Backsheet: Highly resistant polymeric construction Frame: Anodized aluminum Support bars: Anodized aluminum

3-part, 3 bypass diodes, IP67 rated n accordance with IEC 62790 Cable:

 $4 \,\mathrm{mm^2} \,\mathrm{solar} \,\mathrm{cable}, 1.2 \,\mathrm{m} + 1.2 \,\mathrm{m}$ in accordance with EN 50618

s: Stäubli MC4-Evo2 PV-KBT4-EVO-2/PV-KST4-EVO-2 (4mm²) in accordance with IEC 62852, IP68 only when connected Connectors

Origin: Made in Singapore

MAXIMUM RATINGS

Operational temperature: -40 ... +185°F (-40 ... +85°C) Maximum system voltage: 1000 V / 1500 V 75.2 lbs/ft² (3600 Pa)³ Design load (+): snow Maximum test load (+): 112.8 lbs/ft² (5400 Pa) 33.4 lbs/ft² (1600 Pa) Design load (-): wind Maximum test load (-): 50.1 lbs/ft² (2400 Pa)

Max series fuse rating: Max reverse current: 25 A

+ Calculated using a safety factor of 1.5 *See installation manual for mounting instructions

TEMPERATURE RATINGS

Nominal Module Operating Temperature: 44.6°C(±2°C) Temperature coefficient of P_{MDD}: -0.37 %/°C Temperature coefficient of V_{oc} : -0.28 %/°C Temperature coefficient of I_{sc}:

*The temperature coefficients stated are linear values

MECHANICAL DATA

78.9"x39.4"x1.2"(2005x1001x30mm) Dimensions: 21.6 ft² (2.01 m²) Area: 48.5 lbs (22 kg) Weight:

Founded in Norway in 1996, REC is a leading vertically integrated solar energy company. Through integrated manufacturing from silicon to wafers, cells, high-quality panels and extending to solar solutions, REC provides the world with a reliable source of clean energy. REC's renowned product quality is supported by the lowest warranty claims rate in the industry. REC is a Bluestar Elkem company with headquarters in Norway and operational headquarters in Singapore. REC employs around 2,000 people worldwide, producing 1.5 GW of solar panels annually.

^{*}xxx indicates the nominal power class (P_{Moo}) at STC, and can be followed by the suffix XV for modules with a 1500 V maximum system rating.

Q.ANTUM TECHNOLOGY: LOW LEVELISED COST OF ELECTRICITY

Higher yield per surface area, lower BOS costs, higher power classes, and an efficiency rate of up to 20.3%.

INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behaviour.

ENDURING HIGH PERFORMANCE

Long-term yield security with Anti LID Technology, Anti PID Technology¹, Hot-Spot Protect and Traceable Quality Tra.Q™.

EXTREME WEATHER RATING

High-tech aluminium alloy frame, certified for high snow (5400 Pa) and wind loads (2400 Pa).

A RELIABLE INVESTMENT

Inclusive 12-year product warranty and 25-year linear performance warranty².

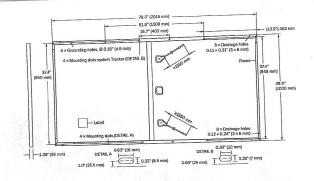
STATE OF THE ART MODULE TECHNOLOGY

Q.ANTUM DUO combines cutting edge cell separation and innovative wiring with Q.ANTUM Technology.

¹ APT test conditions according to IEC/TS 62804-1:2015, method B (-1500V, 168h)

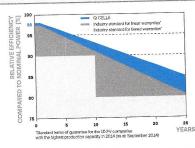
² See data sheet on rear for further information.

THE IDEAL SOLUTION FOR:



Rooftop arrays on commercial/industrial buildings

Ground-mounted solar power plants



ELECTRICAL CHARACTERISTICS

			11 1 11 11 11 11 11 11 11 11 11 11 11 1				The second secon	CAST AND DESCRIPTION OF THE PARTY AND DESCRIP
			380	385	390	395	400	405
/ER CLASS	D TEST CONDITIO	NS STC1 (PC	WER TOLERANG	E+5W/-0W)	Table 1			
AND THE PROPERTY OF THE PROPER		[\A/I	380	385	390	395	400	405
Power at MPP ¹	P _{MPP}			10.10	10.14	10.19	10.24	10.28
Short Circuit Current ¹	I _{sc}	VINTE IN COLUMN PARTY AND ADDRESS OF THE PARTY				48.74	49.00	49.26
Open Circuit Voltage ¹	V _{oc}	[V]					9.75	9.79
Current at MPP	I _{MPP}	[A]						41.36
Voltage at MPP	V_{MPP}	[V]	39.71	40.05				≥20.1
CONTROL CONTRO	η	[%]	≥18.9	≥19.1	≥19.4	≥19.6	≥19.9	220.2
TRALIAN DEDECORMANCE AT NORMAL	OPERATING CON	DITIONS, NA	NOT ²					000
addressing the forest and the second of the			284.4	288.2	291.9	295.6	299.4	303.
TO A CONTROL OF THE PROPERTY O		MODEL PROPERTY AND ADDRESS OF THE PARTY OF T	8 10	8.14	8.17	8.21	8.25	8.2
		-	***************************************	45.46	45.71	45.96	46.21	46.4
Open Circuit Voltage	V _{oc}	AND RESIDENCE AND REAL PROPERTY OF THE PERSON NAMED IN	WALLES TO THE	TO SECRETARY OF THE PARTY OF TH	760	7.64	7.67	7.7:
Current at MPP	I _{MPP}	NAME AND POST OF THE OWNER OWNER OF THE OWNER OWN	AND THE RESIDENCE AND	ACCUPATION OF THE PROPERTY OF	NO. OF THE PROPERTY OF THE PRO	38 71	39.02	39.33
Voltage at MPP	V _{MPP}	[V]		The second secon	NAME OF THE OWNER OWNER OF THE OWNER OWNE	THE RESIDENCE OF THE PARTY OF T		
	Power at MPP¹ Short Circuit Current² Open Circuit Voltage¹ Current at MPP Voltage at MPP Efficiency³ IMUM PERFORMANCE AT NORMAI Power at MPP Short Circuit Current Open Circuit Voltage Current at MPP	IMUM PERFORMANCE AT STANDARD TEST CONDITION Power at MPP¹ P _{MPP} Short Circuit Current¹ I _{SC} Open Circuit Voltage¹ Voc Current at MPP I _{MPP} Voltage at MPP V _{MPP} Efficiency¹ IMUM PERFORMANCE AT NORMAL OPERATING CON Power at MPP P _{MPP} Short Circuit Current I _{SC} Open Circuit Voltage Voc Current at MPP I _{MPP}	IMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC ¹ (PC) Power at MPP ¹ P _{MPP} [W] Short Circuit Current ¹ I _{SC} [A] Open Circuit Voltage ¹ Voc [V] Current at MPP I _{MPP} [A] Voltage at MPP V _{MPP} [V] Efficiency ¹ η [%] IMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NN Power at MPP P _{MPP} [W] Short Circuit Current I _{SC} [A] Open Circuit Voltage V _{OC} [V] Current at MPP I _{MPP} [A]	MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC² (POWER TOLERANCE) Power at MPP¹	MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ (POWER TOLERANCE +5 W/-0 W) Power at MPP¹	MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ (POWER TOLERANCE +5 W / −0 W)	MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC² (POWER TOLERANCE +5 W / - 0 W) Power at MPP¹	MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC² (POWER TOLERANCE +5 W/−0 W) MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC² (POWER TOLERANCE +5 W/−0 W) MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC² (POWER TOLERANCE +5 W/−0 W) MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC² (POWER TOLERANCE +5 W/−0 W) MUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT² MUM PERFORMANCE AT NORMANCE

 $^{1}\text{Measurement tolerances P}_{\text{MPP}} \pm 3\%; l_{\text{SC}}; V_{\text{OC}} \pm 5\% \text{ at STC: } 1000 \text{W/m}^{2}, 25 \pm 2^{\circ}\text{C}, \text{AM 1.5G according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5G } 1000 \text{W/m}^{2}, 1$

Q CELLS PERFORMANCE WARRANTY

At least 98% of nominal power during first year. Thereafter max. 0.54% degradation per year. At least 93.1% of nominal power up to 10 years. At least 85% of nominal power up to

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 $^{\circ}\text{C}$, 1000 W/m²)

TEMPERATURE COEFFICIENTS						enter the second state of the second	
	~	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.27
Temperature Coefficient of I _{sc}	u			Normal Module Operating Temperature	NMOT	[°F]	109±5.4 (43±3°C)
T Confficient of P.	V	[%/K]	-0.50	igotification of the control of the	-	Description of the Party of the	CATAMOR COLONIA CONTRACTOR CONTRA

PROPERTIES FOR SYSTEM DESIGN

				ACCORDED TO THE PROPERTY OF TH
Maximum System Voltage V _{sys}	ΙVΊ	1500 (IEC)/1500 (UL)	Safety Class	
WARRY TO THE REAL PROPERTY OF THE PROPERTY OF	IA DC1	20	Fire Rating	C/TYPE1
Maximum Series Fuse Rating	[A DC]		Permitted Module Temperature	-40°F up to +185°F
Max. Design Load, Push / Pull ³	[lbs/ft ²]		on Continuous Duty	(-40°C up to +85°C)
Max. Test Load, Push/Pull3	[lbs/ft ²]	113 (5400 Pa) / 50 (2400 Pa)	on commods buty	
	Description of the Control of the Co			

QUALIFICATIONS AND CERTIFICATES

UL 1703, CE-compliant, IEC 61215:2016, IEC 61730:2016, Application Class II, U.S. Patent No. 9,893,215 (solar cells)

³ See Installation Manual

Number of Modules per Pallet	29
Number of Pallets per 53' Trailer	27
Number of Pallets per 40' HC-Container	22
Pallet Dimensions (L×W×H)	81.9 × 45.3 × 46.9 in (2080 × 1150 × 1190 mm)
Pallet Weight	1635 lbs (742 kg)

PACKAGING INFORMATION

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

THE

FRAMED 144 HALF-CELL MODULE

144-Cell

380-410W

POWER OUTPUT RANGE

20.2%

MAXIMUM EFFICIENCY

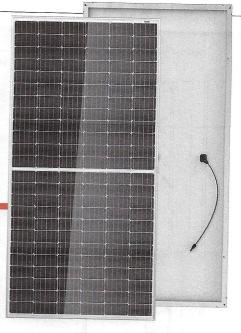
0~+5W

POSITIVE POWER TOLERANCE

Founded in 1997, Trina Solar is the world's leading total solution provider for solar energy. With local presence around the globe, Trina Solar is able to provide exceptional service to each customer in each market and deliver our innovative, reliable products with the backing of Trina as a strong, bankable brand. Trina Solar now distributes its PV products to over 100 countries all over the world. We are committed to building strategic, mutually beneÿcial collaborations with installers, developers, distributors and other partners in driving smart energy together.

Comprehensive Products and System Certificates

IEC61215/IEC61730/UL1703/IEC61701/IEC62716 ISO 9001: Quality Management System ISO 14001: Environmental Management System ISO14064: Greenhouse Gases Emissions Veriÿcation OHSAS 18001: Occupation Health and Safety Management System



PRODUCTS TSM-DE15H(II)

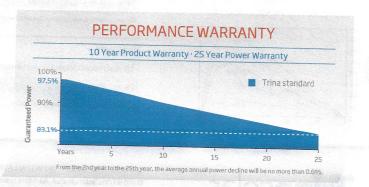
COLOR OF FRAME **POWER RANGE** Silver 385-410W

High power output

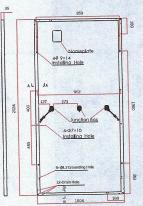
- Reduce BOS cost with high power bin and 1500V system voltage
- New cell string layout and split J-box location reduces the energy loss caused by inter-row shading
- Lower resistance of half-cut cells ensures higher power

High energy generation, low LCOE

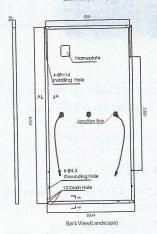
- Excellent 3rd party validated IAM and low light performance with cell process and module material optimization
- Integrated LRF(Light Redirecting Film) to enhance power
- Low P_{max} temp coefficient (-0.36%) increases energy production
- Better anti-shading performance and lower operating temperature

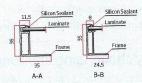

Certified to perform in highly challenging environments

- High PID resistance through cell process and module material control
- Resistant to salt, acid, sand, and ammonia
- Certified to 5400 Pa positive load and 2400 Pa negative load

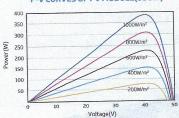

Easy to install, wide application

- Frame design enables compatibility with standard installation methods
- Deployable for ground mounted and rooftop projects
- Safe and easy to transport, handle, and install





DIMENSIONS OF PV MODULE(mm)



I-V CURVES OF PV MODULE(390W)

P-V CURVES OF PV MODULE(390W)

ELECTRICAL DATA (STC)

Peak Power Watts-Pmax (Wp)*	380	385	390	395	400	405	410
Power Output Tolerance-PMAX (W)				0~+5			
Maximum Power Voltage-VMPP (V)	39.6	40.1	40.5	40.8	41.1	41.4	41.7
Maximum Power Current-Imp (A)	9.59	9.61	9.64	9.69	9.74	9.79	9.84
Open Circuit Voltage-Voc (V)	48.1	48.5	49.7	50.1	50.4	50.8	51.2
Short Circuit Current-Isc (A)	9.99	10.03	10.08	10.13	10.18	10.23	10.29
Module E°ciency ηm (%)	18.7	18.9	19.2	19.4	19.7	19.9	20.2

STC: Irradiance 1000W/m², Cell Temperature 25°C, Air Mass AM1.5. *Measurement tolerance: $\pm 3\%.$

ELECTRICAL DATA (NMOT)

Maximum Power-Pmax (Wp)	287	291	296	299	303	307	311
Maximum Power Voltage-VMPP (V)	37.6	37.9	38.6	38.9	39.1	39.4	39.7
Maximum Power Current-Impp (A)	7.64	7.68	7.66	7.70	7.74	7.78	7.82
Open Circuit Voltage-Voc (V)	45.4	45.8	46.9	47.3	47.6	47.9	48.3
Short Circuit Current-Isc (A)	8.05	8.08	8.12	8.16	8.20	8.24	8.29

NMOT: Irradiance at 800W/m², Ambient Temperature 20°C, Wind Speed 1m/s.

MECHANICAL DATA

Solar Cells	Monocrystalline
Cell Orientation	144 cells (6 × 24)
Module Dimensions	2024 × 1004 × 35 mm (79.69 × 39.53 × 1.38 inches)
Weight	22.8kg (50.3lb)
Glass	3.2 mm (0.13 inches), High Transmission, AR Coated Heat Strengthened Glass
Encapsulant Material	EVA
Backsheet	White
Frame	35 mm (1.38 inches) Anodized Aluminium Alloy
J-Box	IP 68 rated
Cables	Photovoltaic Technology Cable 4.0mm² (0.006 inches²) Portrait: N 140mm/P 285mm (5.51/11.22 inches) Landscape: N 1400 mm /P 1400 mm (55.12/55.12 inches)
Connector	Trina TS4

TEMPERATURE RATINGS

NMOT(Nominal Module OperatingTemperature)	41°C (±3°C)
Temperature Coefficient of PMAX	-0.36%/°C
Temperature Coefficient of Voc	-0.26%/°C
Temperature Coefficient of Isc	0.04%/°C

MAXIMUM RATINGS

Operational Temperature	-40~+85°C
Maximum System Voltage	1500V DC (IEC)
	1500V DC (UL)
Max Series Fuse Rating	20A

(Do not connect Fuse in Combiner Box with two or more strings in parallel connection)

WARRANTY

10 year Product Workmanship Warranty

25 year Power Warranty

(Please refer to product warranty for details)

PACKAGING CONFIGURATION

Modules per box: 30 pieces

Modules per 40' container: 660 pieces

THE

DUOMAX twin

BIFACIAL DUAL GLASS 144 HALF-CELL MODULE

144-Cell

MONOCRYSTALLINE MODULE

380-405W

POWER OUTPUT RANGE

19.7%

MAXIMUM EFFICIENCY

0~+5W

POSITIVE POWER TOLERANCE

Founded in 1997, Trina Solar is the world's leading total solution provider for solar energy. With local presence around the globe, Trina Solar is able to provide exceptional service to each customer in each market and deliver our innovative, reliable products with the backing of Trina as a strong, bankable brand. Trina Solar now distributes its PV products to over 100 countries all over the world. We are committed to building strategic, mutually beneyical collaborations with installers, developers, distributors and other partners in driving smart energy together.

Comprehensive Products and System Certificates

IEC61215/IEC61730/IEC61701/IEC62716
ISO 9001: Quality Management System
ISO 14001: Environmental Management System
ISO14064: Greenhouse Gases Emissions Veriÿcation
OHSAS 18001: Occupation Health and Safety
Management System

PRODUCT
TSM-DEG15HC.20(II)

POWER RANGE 380-405W

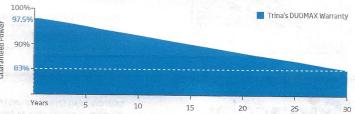
High power output

- Up to 405W front power and 19.7% module effiliency with half-cut technology enabling higher BOS savings
- Lower resistance of half-cut cells ensures higher power

Certified to perform in highly challenging environments

- High PID resistance through cell process and module material control
- · Resistant to salt, acid, sand, and ammonia
- Proven to be reliable in high temperature and humidity areas
- Certified to the best fire class A
- Minimizes micro-crack and snail trails
- Certified to 5400 Pa positive load and 2400 Pa negative load

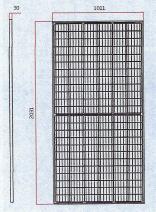
High energy generation, low LCOE

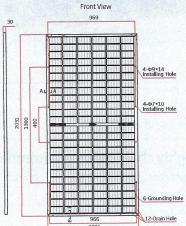

- Up to 25% additional power gain from back side, depending on the albedo
- Excellent 3rd party validated IAM and low light performance with cell process and module material optimization
- Low temp coefficient (-0.35%) and NMOT increases energy production
- Better anti-shading performance and lower operating temperature
- Higher power from same installation footprint as standard modules

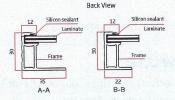
Easy to install, wide application

- Frame design enables compatibility with standard installation methods
- Deployable for ground mounted utility, carports, and agricultural projects
- Safe and easy to transport, handle, and install like normal framed modules

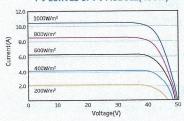
Trina Solar's DUOMAX Performance Warranty

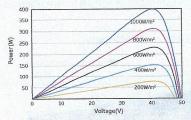



From the 2nd year to the 30th year, the average annual power decline will be no more than 0.5%.



BIFACIAL DUAL GLASS 144 HALF-CELL MODULE


DIMENSIONS OF PV MODULE(mm)



I-V CURVES OF PV MODULE(400W)

P-V CURVES OF PV MODULE(400W)

ELECTRICAL DATA (STC)

Peak Power Watts-PMAX (Wp)*	380	385	390	395	400	405		
Power Output Tolerance-Pmax (W)	0~+5							
Maximum Power Voltage-V _{MPP} (V)	40.3	40.4	40.5	40.6	40.7	40.8		
Maximum Power Current-Impp (A)	9.43	9.53	9.63	9.73	9.83	9.93		
Open Circuit Voltage-Voc (V)	49.2	49.4	49.6	49.7	49.9	50.1		
Short Circuit Current-Isc (A)	9.99	10.09	10.19	10.29	10.39	10.49		
Module Efficiency η m (%)	18.5	18.7	19.0	19.2	19.5	19.7		

STC: Irradiance 1000W/m², Cell Temperature 25°C, Air Mass AM1.5.

*Measurement tolerance: ±3%.

ELECTRICAL DATA (NMOT)

Maximum Power-PMAX (Wp)	289	292	296	300	304	308
Maximum Power Voltage-VMPP (V)	38,1	38.2	38.3	38.4	38.6	38.7
Maximum Power Current-Impp (A)	7.58	7.65	7.73	7.81	7.88	7.95
Open Circuit Voltage-Voc (V)	46.6	46.8	47.0	47.1	47.2	47.4
Short Circuit Current-Isc (A)	8.05	8.13	8.21	8.29	8.37	8.45

NMOT: Irradiance at 800W/m^2 , Ambient Temperature $20 ^{\circ}\text{C}$, Wind Speed 1 m/s.

Electrical characteristics with different rear side power gains (referenced specific to 400 Wp front)**

Maximum Power-P _{MAX} (Wp)	420	440	460	480	500
Maximum Power Voltage-V _{MPP} (V)	40.7	40.7	40.7	40.7	40.7
Maximum Power Current-Impp (A)	10.32	10.81	11.30	11.80	12.29
Open Circuit Voltage-Voc (V)	49.9	50.0	50.0	50.0	50.1
Short Circuit Current-Isc (A)	10.91	11.43	11.95	12.47	12.99
Pmax gain	5%	10%	15%	20%	25%

Bifaciality Factor: 70±5%.

MECHANICAL DATA

Solar Cells	Monocrystalline
Cell Orientation	144 cells (6 × 24)
Module Dimensions	2031 × 1011× 30 mm (79.96×39.80 × 1.18 inches)
Weight	26.8 kg (59.1 lb)
Front Glass	2.0 mm (0.08 inches), High Transmission, AR Coated Heat Strengthened Glass
Encapsulant Material	POE/EVA
Back Glass	2.0 mm (0.08 inches), Heat Strengthened Glass (White Grid Glass)
Frame	30 mm (1.18 inches) Anodized Aluminium Alloy
J-Box	IP 68 rated
	Photovoltaic Technology Cable 4.0 mm ² (0.006 inches ²)
Cables	Portrait: 280/280 mm (11.02/11.02 inches)
	Landscape: 1900/1900 mm (74.80/74.80 inches)
Connector	TS4

TEMPERATURE RATINGS

NMOT (Nominal Module Operating Temperature)	41°C (±3°C)
Temperature Coefficient of P MAX	-0.35%/°C
Temperature Coefficient of V oc	-0.25%/°C
Temperature Coefficient of L sc	0.04%/°C

MAXIMUM RATINGS

Operational Temperature	-40~+85°C
Maximum System Voltage	1500V DC (IEC)
	1500V DC (UL)
Max Series Fuse Rating	20A

(Do not connect Fuse in Combiner Box with two or more strings in parallel connection)

WARRANTY

10 year Product Workmanship Warranty

30 year Power Warranty

(Please refer to product warranty for details)

PACKAGING CONFIGURATION

Modules per box: 32 pieces
Modules per 40' container: 704 pieces

Inverters & Optimizers

Single Phase Inverter with HD-Wave Technology

for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US / SE7600H-US / SE10000H-US / SE11400H-US

Optimized installation with HD-Wave technology

- Specifically designed to work with power optimizers
- Record-breaking efficiency
- Quick and easy inverter commissioning directly from a smartphone using the SolarEdge SetApp
- Fixed voltage inverter for longer strings
- Integrated arc fault protection and rapid shutdown for NEC 2014 and 2017, per article 690.11 and 690.12

- UL1741 SA certified, for CPUC Rule 21 grid compliance
- Extremely small
- Built-in module-level monitoring
- Outdoor and indoor installation
- Optional: Revenue grade data, ANSI C12.20 Class 0.5 (0.5% accuracy)

NVERTERS

/ Single Phase Inverter with HD-Wave Technology for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US/ SE7600H-US / SE10000H-US / SE11400H-US

Model Number	SE3000H-US	SE3800H-US	SE5000H-US	SE6000H-US	SE7600H-US	SE10000H-US	SE11400H-US	
APPLICABLE TO INVERTERS WITH PART NUMBER				SEXXXXH-XXXXXBXX	4			
OUTPUT								
Rated AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	VA
Maximum AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	VA
AC Output Voltage MinNomMax. (211 - 240 - 264)	✓	✓	✓	✓	✓	✓	✓	Vac
AC Output Voltage MinNomMax. (183 - 208 - 229)	-	✓	-	✓	-	-	✓	Vac
AC Frequency (Nominal)				59.3 - 60 - 60.5 ⁽¹⁾				Hz
Maximum Continuous Output Current @240V	12.5	16	21	25	32	42	47.5	А
Maximum Continuous Output Current @208V	-	16	-	24	-	-	48.5	А
Power Factor		1, adjustable -0.85 to 0.85						
GFDI Threshold				1				А
Utility Monitoring, Islanding Protection, Country Configurable Thresholds				Yes				
INPUT								
Maximum DC Power @240V	4650	5900	7750	9300	11800	15500	17650	W
Maximum DC Power @208V	=	5100	=	7750	=	-	15500	W
Transformer-less, Ungrounded				Yes				
Maximum Input Voltage				480				Vdc
Nominal DC Input Voltage		3	80			400		Vdc
Maximum Input Current @240V ⁽²⁾	8.5	10.5	13.5	16.5	20	27	30.5	Adc
Maximum Input Current @208V ⁽²⁾	-	9	-	13.5	-	-	27	Adc
Max. Input Short Circuit Current				45				Adc
Reverse-Polarity Protection				Yes				
Ground-Fault Isolation Detection				600kΩ Sensitivity				
Maximum Inverter Efficiency	99			9	9.2			%
CEC Weighted Efficiency			Ğ	99			99 @ 240V 98.5 @ 208V	%
Nighttime Power Consumption				< 2.5				W

⁽¹⁾ For other regional settings please contact SolarEdge support

⁽²⁾ A higher current source may be used; the inverter will limit its input current to the values stated

Single Phase Inverter with HD-Wave Technology for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US/ SE7600H-US / SE10000H-US / SE11400H-US

Model Number	SE3000H-US	SE3800H-US	SE5000H-US	SE6000H-US	SE7600H-US	SE10000H-US	SE11400H-US	
ADDITIONAL FEATURES								
Supported Communication Interfaces			RS485, Etherne	t, ZigBee (optional), C	ellular (optional)			
Revenue Grade Data, ANSI C12.20				Optional ⁽³⁾				
Inverter Commissioning		with the Se	etApp mobile applicat	on using built-in Wi-F	i Access Point for loca	al connection		
Rapid Shutdown - NEC 2014 and 2017 690.12			Automatic Rap	id Shutdown upon AC	Grid Disconnect			
STANDARD COMPLIANCE								
Safety		UL1741	, UL1741 SA, UL1699B	CSA C22.2, Canadiar	AFCI according to T.	I.L. M-07		
Grid Connection Standards		IEEE1547, Rule 21, Rule 14 (HI)						
Emissions				FCC Part 15 Class B				
INSTALLATION SPECIFICAT	IONS							
AC Output Conduit Size / AWG Range		1	'' Maximum / 14-6 AV	/G		1" Maximun	n /14-4 AWG	
DC Input Conduit Size / # of Strings / AWG Range		1" Maxi	imum / 1-2 strings / 1-	l-6 AWG		1" Maximum / 1-3	strings / 14-6 AWG	
Dimensions with Safety Switch (HxWxD)		17.7 x	14.6 x 6.8 / 450 x 37	0 x 174		21.3 x 14.6 x 7.3	/ 540 x 370 x 185	in / mm
Weight with Safety Switch	22 .	/ 10	25.1 / 11.4	26.2	/ 11.9	38.8	/ 17.6	lb / kg
Noise		<	25			<50		dBA
Cooling		Natural Convection						
Operating Temperature Range		-40 to +140 / -40 to +60 ⁽⁴⁾						°F/°C
Protection Rating			NEMA	4X (Inverter with Safet	y Switch)			

⁽³⁾ Revenue grade inverter P/N: SExxxxH-US000BNC4

⁽⁴⁾ Full power up to at least 50°C / 122°F; for power de-rating information refer to: https://www.solaredge.com/sites/default/files/se-temperature-derating-note-na.pdf

NVERTERS

Three Phase Inverters for the 120/208V Grid for North America

SE9KUS / SE14.4KUS

The best choice for SolarEdge enabled systems

- Specifically designed to work with power optimizers
- Quick and easy inverter commissioning directly from a smartphone using the SolarEdge SetApp
- Internet connection through Ethernet or Wireless
- Fixed voltage inverter for longer strings
- UL1741 SA certified, for CPUC Rule 21 grid compliance

- Built-in module-level monitoring
- Integrated arc fault protection and rapid shutdown for NEC 2014 and 2017, per article 690.11 and 690.12
- Integrated Safety Switch
- Supplied with RS485 Surge Protection, to better withstand lightning events
- Small, lightweight, and easy to install outdoors or indoors on provided bracket

/ Three Phase Inverters for the 120/208V Grid(1) for North America

SE9KUS / SE14.4KUS

MODEL NUMBER	SE9KUS	SE14.4KUS			
APPLICABLE TO INVERTERS	SEXXK-XXXXXBXX4				
WITH PART NUMBER					
OUTPUT					
Rated AC Power Output	9000	14400	VA		
Maximum AC Power Output	9000	14400	VA		
Output Line Connections	3 phase, 3-wire / PE (L1 3 phase, 4-wire / PE (L1-				
AC Output Voltage Minimum-Nominal-Maximum ⁽²⁾ (L-N)	105-120-13				
AC Output Voltage Minimum-Nominal-Maximum ⁽²⁾ (L-L)	183-208-2	29	Vac		
AC Frequency Min-Nom-Max ⁽²⁾	59.3 - 60 - 6	50.5	Hz		
Maximum Continuous Output Current (per Phase)	25	40			
GFDI Threshold	1		Α		
Utility Monitoring, Islanding Protection, Country Configurable Set Points	Yes				
THD	≤ 3		%		
INPUT					
Maximum DC Power (Module STC)	12150	19400	W		
Transformer-less, Ungrounded	Yes				
Maximum Input Voltage DC to Gnd	250	300	Vdc		
Maximum Input Voltage DC+ to DC-	500	600	Vdc		
Nominal Input Voltage DC to Gnd	200		Vdc		
Nominal Input Voltage DC+ to DC-	400		Vdc		
Maximum Input Current	26.5	38	Adc		
Maximum Input Short Circuit Current	45		Adc		
Reverse-Polarity Protection	Yes				
Ground-Fault Isolation Detection	1MΩ Sensitivity	350kΩ Sensitivity ⁽³⁾			
CEC Weighted Efficiency	96.5	97.5	%		
Night-time Power Consumption	< 3	< 4	W		
ADDITIONAL FEATURES					
Supported Communication Interfaces	RS485, Ethernet, Built-in (Cellular (optional)			
Inverter Commissioning	With the SetApp mobile application using button	uilt-in access point for local connec-			
Rapid Shutdown – NEC 2014 and 2017 690.12	Automatic Rapid Shutdown up	on AC Grid Disconnect			
RS485 Surge Protection Plug-in	Supplied with the				
Smart Energy Management	Export Limita				
STANDARD COMPLIANCE	·				
Safety	UL1741, UL1741 SA, UL1699B, CSA C22.2, M-07	Canadian AFCI according to T.I.L.			
Grid Connection Standards	IEEE1547, Rule 21, F	Rule 14 (HI)			
Emissions	FCC part15 cl				
INSTALLATION SPECIFICATIONS	ree parers en	u33 D			
AC output conduit size / AWG range	3/4" minimum / 8	B-4 AWG			
DC input conduit size / AWG range	3/4" minimum / 1				
Number of DC inputs	2 pairs	3 pairs ⁽⁴⁾			
·		· · · · · · · · · · · · · · · · · · ·			
Dimensions (H x W x D)	21 x 12.5 x 10.5 / 540 x 315 x 260		in / mn		
Dimensions with Safety Switch (H x W x D)	30.5 x 12.5 x 10.5 / 77		in / mn		
Weight	93.6 / 42.5		lb / kg		
Weight with Safety Switch	100.3 / 45	.5	lb / kg		
Cooling	Fans (user repla	ceable)			
Noise	< 55		dBA		
Operating Temperature Range	-40 to +140 / -40	to +60 ⁽⁵⁾	°F/°C		
Protection Rating	NEMA 3F	8			

⁽¹⁾ For 277/480V inverters refer to:https://www.solaredge.com/sites/default/files/se-three-phase-us-inverter-277-480V-setapp-datasheet.pdf

⁽²⁾ For other regional settings please contact SolarEdge support (3) Where permitted by local regulations

⁽⁴⁾ Field replacement kit for 1 pair of inputs P/N: DCD-3PH-1TBK; Field replacement kit for 3 pairs of fuses and holders P/N: DCD-3PH-6FHK-S1

⁽⁵⁾ For power de-rating information refer to: https://www.solaredge.com/sites/default/files/se-temperature-derating-note-na.pdf (complete for power de-rating-note-na.pdf (complete for power de-rating-na.pdf (complete for power de-ratin

Three Phase Inverter with Synergy Technology

for the 208V Grid for North America

SE43.2KUS

INVERTERS

Specifically designed to work with power optimizers

- Easy two-person installation each unit mounted separately, equipped with cables for simple connection between units
- Balance of System and labor reduction compared to using multiple smaller string inverters
- Independent operation of each unit enables higher uptime and easy serviceability
- No wasted ground area: wall/rail mounted, or horizontally mounted under the modules (10° inclination)

- Integrated arc fault protection and rapid shutdown for NEC 2014 and 2017, per article 690.11 and 690.12
- Fixed voltage inverter for superior efficiency (97%) and longer strings
- Integrated DC Safety Switch
- Built-in RS485 Surge Protection, to better withstand lightning events
- Built-in module-level monitoring with Ethernet or cellular GSM

/ Three Phase Inverter with Synergy Technology for the 208V Grid for North America

SE43.2KUS

SE43.2KUS				
43200	VA			
43200	VA			
4-wire WYE (L1-L2-L3-N) plus PE or 3 wire Delta				
105-120-132.5	Vac			
183-208-229	Vac			
59.3 - 60 - 60.5	Hz			
120	А			
1	А			
Yes				
58200 / 19400	W			
Yes				
300	Vdc			
600	Vdc			
200	Vdc			
400	Vdc			
38 x 3	Adc			
135	Adc			
Yes				
350kΩ Sensitivity per Unit				
97	%			
< 12	W			
	,			
RS485, Ethernet, Cellular GSM (optional)				
•				
Built-in				
Ordered separately with part number: DCD-SGY-COVER-HP; Dimensions (H x W x D) – 314.3 x 343.7 x 134.5 mm				
	,			
1000V / 3 x 40A				
1741 1741 SA 1699R 1998 (SA 2 22				
rec partis dass n				
2				
2 / 4/U / 4				
2 x 1.25" / 6-14 / 9 strings				
Secondary Unit: 21 x 12.5 x 10.5 / 540 x 315 x 260	in / m			
	lb / k			
	°F / °C			
< 60	dBA			
NEMA 3R				
	43200 4-wire WYE (L1-L2-L3-N) plus PE or 3 wire Delta 105-120-132.5 183-208-229 59.3 - 60 - 60.5 120 1 Yes 58200 / 19400 Yes 300 600 200 400 38 x 3 135 Yes 350kΩ Sensitivity per Unit 97 < 12 R5485, Ethernet, Cellular GSM (optional) NEC2014 and NEC2017 compliant/certified, upon AC Grid Disconnect Built-in Ordered separately with part number: DCD-SGY-COVER-HP; Dimensions (H x W x D) - 314.3 x 343.7 x 134.5 mm 1000V / 3 x 40A UL1741, UL1741 SA, UL1699B, UL1998, CSA 2.22 IEEE 1547, Rule 21, Rule 14 (HI) FCC part15 class A 3 2" / 4/0 / 4 2 x 1.25" / 6-14 / 9 strings Primary Unit: 37 x 12.5 x 10.5 / 940 x 315 x 260; Secondary Unit: 21 x 12.5 x 10.5 / 940 x 315 x 260 Primary Unit: 105.8 / 48; Secondary Unit 99.2 / 45 -40 to +140 / -40 to +60 ⁽³⁾ Fan (user replaceable)			

⁽¹⁾ For other regional settings please contact SolarEdge support

Single input option per unit (up to 3AWG) available
 For power de-rating information refer to: https://www.solaredge.com/sites/default/files/se-temperature-derating-note-na.pdf

INVERTERS

Three Phase Inverters for the 277/480V Grid for North America

SE20KUS / SE30KUS / SE33.3KUS

The best choice for SolarEdge enabled systems

- Quick and easy inverter commissioning directly from a smartphone using the SolarEdge SetApp
- Specifically designed to work with power optimizers
- Superior efficiency (98%)
- Fixed voltage inverter for longer strings
- Integrated Safety Switch
- UL1741 SA certified, for CPUC Rule 21 grid compliance

- Integrated arc fault protection and rapid shutdown for NEC 2014 and 2017, per article 690.11 and 690.12
- Built-in module-level monitoring
- Internet connection through Ethernet or Wireless
- Small, lightweight, and easy to install outdoors or indoors on provided bracket
- Supplied with RS485 Surge Protection Device, to better withstand lightning events

/ Three Phase Inverters for the 277/480V Grid(1) for North America

SE20KUS / SE30KUS / SE33.3KUS

MODEL NUMBER	SE20KUS	SE30KUS	SE33.3KUS	
APPLICABLE TO INVERTERS		SEXXK-XXXXXBXX4	1	
WITH PART NUMBER OUTPUT				
	20000	20000	22200	1/4
Rated AC Power Output	20000	30000	33300	VA
Maximum AC Power Output	20000	30000	33300	VA
Output Line Connections	3 phase	e, 4-wire / PE (L1-L2-L3-N)	, TN, TT	
AC Output Voltage Minimum-Nominal-Maximum ⁽²⁾ (L-N)		244-277-305		Vac
AC Output Voltage Minimum-Nominal-Maximum ⁽²⁾ (L-L)		422.5-480-529		Vac
AC Frequency Min-Nom-Max ⁽²⁾		59.3 - 60 - 60.5		Hz
Maximum Continuous Output Current (per Phase)	24	36.5	40	А
GFDI Threshold		1		А
Utility Monitoring, Islanding Protection, Country Configurable Set Points		Yes		
THD		≤ 3		%
INPUT				
Maximum DC Power (Module STC)	27000	40500	45000	W
Transformer-less, Ungrounded		Yes		
Maximum Input Voltage DC to Gnd		490		Vdc
Maximum Input Voltage DC+ to DC-		1000		Vdc
Nominal Input Voltage DC to Gnd		420		Vdc
Nominal Input Voltage DC+ to DC-		840		Vdc
Maximum Input Current	26.5	39	40	Adc
Maximum Input Short Circuit Current		45		Adc
Reverse-Polarity Protection	Yes			
Ground-Fault Isolation Detection	1MΩ Sensitivity			
CEC Weighted Efficiency	98		8.5	%
Night-time Power Consumption	< 3		< 4	W
ADDITIONAL FEATURES	-		•	
Supported Communication Interfaces	RS485 I	Ethernet, Built-in Cellular (c	ontional)	Ţ
Inverter Commissioning	<u>'</u>	, , ,	ss point for local connection	
Rapid Shutdown – NEC 2014 and 2017 690.12		pid Shutdown upon AC Gr	· · · · · · · · · · · · · · · · · · ·	
RS485 Surge Protection Plug-in		Supplied with the inverter		
Smart Energy Management		Export Limitation		
STANDARD COMPLIANCE				
Safety	UL1741, UL1741 SA, UL169	9B, CSA C22.2, Canadian A	FCI according to T.I.L. M-07	
Grid Connection Standards	IE	EE1547, Rule 21, Rule 14 (F	HI)	
Emissions		FCC part15 class B		
INSTALLATION SPECIFICATIONS				
AC output conduit size / AWG range	3/4" minimum / 12-6 AWG	3/4" minimu	um / 8-4 AWG	
DC input conduit size / AWG range		3/4" minimum / 12-6 AWG	i	
Number of DC inputs	2 pairs	3 p	airs ⁽⁴⁾	
Dimensions (H x W x D)	21	x 12.5 x 10.5 / 540 x 315 x	260	in / mı
Dimensions with Safety Switch (H x W x D)	30.5	x 12.5 x 10.5 / 775 x 315 x	260	in / mı
Weight	67.6 / 30.7	99.5	5 / 45	lb / k
Weight with Safety Switch	74.2 / 33.7	106	5 / 48	lb / kg
Cooling		Fans (user replaceable)		
Noise	< 50	· · · · · · · · · · · · · · · · · · ·	55	dBA
Operating Temperature Range		-40 to +140 / -40 to +60 ⁽⁵⁾		°F/°C
Operating reinperature name				

 $^{{}^{(1)}\} For\ 120/208V\ inverters\ refer\ to:\ https://www.solaredge.com/sites/default/files/se-three-phase-us-inverter-208V-setapp-datasheet.pdf$

⁽²⁾ For other regional settings please contact SolarEdge support (3) Where permitted by local regulations

^(a) Field replacement kit for 1 pair of inputs P/N: DCD-3PH-1TBK; Field replacement kit for 3 pairs of fuses and holders P/N: DCD-3PH-6FHK-S1 ^(b) For power de-rating information refer to: https://www.solaredge.com/sites/default/files/se-temperature-derating-note-na.pdf

Power Optimizer Zep Compatible™

Module Add-On For North America

P320-ZEP, P400-ZEP

POWEROPTIMIZER

Compatible with Zep Groove framed modules

- Specifically designed to work with SolarEdge inverters
- Certified Zep CompatibleTM bracket
- Attaches to module frame without screws reduces on-roof labor and mounting costs
- Power optimizer equipment grounded through the bracket
- Up to 25% more energy
- Superior efficiency (99.5%)

- Mitigates all types of module mismatch losses, from manufacturing tolerance to partial shading
- Flexible system design for maximum space utilization
- Next generation maintenance with modulelevel monitoring
- Compliant with arc fault protection and rapid shutdown NEC requirements (when installed as part of the SolarEdge system)
- Module-level voltage shutdown for installer and firefighter safety

✓ Power Optimizer - Zep Compatible™ Module Add-On For North America

P320-ZEP, P400-ZEP

Optimizer model (typical module compatibility)	P320-ZEP (for 60-cell modules)	P400-ZEP (for 72 & 96-cell modules)	
INPUT			·
Rated Input DC power ⁽¹⁾	320	400	W
Absolute Maximum Input Voltage (Voc at lowest temperature)	48	80	Vdc
MPPT Operating Range	8 - 48	8 - 80	Vdc
Maximum Short Circuit Current (Isc)	11	10.1	Adc
Maximum DC Input Current	13.75	12.63	Adc
Maximum Efficiency	99.	5	%
Weighted Efficiency	98.	8	%
Overvoltage Category	II		
OUTPUT DURING OPERATION (POWER OPT	IMIZER CONNECTED TO OPERATING	G INVERTER)	
Maximum Output Current	15	i	Adc
Maximum Output Voltage	60)	Vdc
OUTPUT DURING STANDBY (POWER OPTIM	IZER DISCONNECTED FROM INVER	TER OR INVERTER OFF)	
Safety Output Voltage per Power Optimizer	1 ± (0.1	Vdc
STANDARD COMPLIANCE			
EMC	FCC Part15 Class B, IEC61	1000-6-2, IEC61000-6-3	
Safety	IEC62109-1 (class	II safety), UL1741	
RoHS	Ye:	S	
INSTALLATION SPECIFICATIONS			
Maximum Allowed System Voltage	100	0	Vdc
Input Connector	MC ²	4 ⁽²⁾	
Output Connector	Double Insul	lated; MC4	
Output Wire Length	0.95 / 3.0	1.2 / 3.9	m / ft
Operating Temperature Range	-40 - +85 /	-40 - +185	°C / °F
Protection Rating	IP68 / NE	EMA 6P	
Relative Humidity	0 - 1	00	%

PV System Design Using a Solaredge Inverter ⁽³⁾	Single Phase HD-Wave	Single phase	Three phase 208v	Three phase 480v	
Minimum String Length (Power Optimizers)	8		10	18	
Maximum String Length (Power Optimizers)	25		25	50 ⁽⁴⁾	
Maximum Power per String	5700 (6000 with SE7600H-US)	5250	6000	12750	W
Parallel Strings of Different Lengths or Orientations	Yes				

^{*} These specifications apply to power optimizers with part number Pxxx-5NM4MTx
 Rated STC power of the module. Module of up to +5% power tolerance allowed.
 Other input connector types available upon request; contact SolarEdge for details.

⁽a) For detailed string sizing information refer to: http://www.solaredge.com/sites/default/files/string_sizing_na.pdf.
(b) A string with more than 30 optimizers does not meet NEC rapid shutdown requirements; safety voltage will be above the 30V requirement.

Power Optimizer For North America

P860

POWEROPTIMIZER

PV power optimization at the module-level The most cost effective solution for commercial and large field installations

- Specifically designed to work with SolarEdge inverters
- Up to 25% more energy
- Superior efficiency (99.5%)
- Balance of System cost reduction; 50% less cables, fuses and combiner boxes, over 2x longer string lengths possible
- Fast installation with a single bolt

- Advanced maintenance with module-level monitoring
- Module-level voltage shutdown for installer and firefighter safety
- Meets NEC requirements for arc fault protection (AFCI) and Photovoltaic Rapid Shutdown System (PVRSS)
- Use with two PV modules connected in parallel

/ Power Optimizer **For North America**

P860

Optimizer Model (Typical Module Compatibility)	P860 (for 2 x 72 cell modules)						
INPUT							
Rated Input DC Power ⁽¹⁾		860		W			
Connection Method		Dual input for independently conr	nected modules ⁽²⁾				
Absolute Maximum Input Voltage (Voc at lowest temperature)		60					
MPPT Operating Range		12.5 - 60		Vdc			
Maximum Short Circuit Current (Isc)		22					
Maximum Short Circuit Current per input (lsc)		11		Adc			
Maximum Efficiency		99.5		%			
Weighted Efficiency		98.6		%			
Overvoltage Category		II					
OUTPUT DURING OPERATION (F	OWER OPTIMIZ	ER CONNECTED TO OPERATING	G SOLAREDGE INVERTER)	'			
Maximum Output Current		18		Adc			
Maximum Output Voltage		85					
OUTPUT DURING STANDBY (POW	ER OPTIMIZER DIS	SCONNECTED FROM SOLAREDG	EINVERTER OR SOLAREDGE INVE	RTEROFF			
Safety Output Voltage per Power Optimizer		1 ± 0.1					
STANDARD COMPLIANCE				'			
Photovoltaic Rapid Shutdown System		Compliant with NEC 2014	1, 2017 ⁽³⁾				
EMC		FCC Part15 Class B, IEC61000-6-2	2, IEC61000-6-3				
Safety		IEC62109-1 (class II safety)	, UL1741				
Material		UL94 V-0, UV Resista	ant				
RoHS		Yes					
INSTALLATION SPECIFICATIONS							
Compatible SolarEdge Inverters		Three phase inverte	ers				
Maximum Allowed System Voltage		1000		Vdc			
Dimensions (W x L x H)		129 x 168 x 59 / 5.1 x 6.6°	1 x 2.32	mm / ir			
Weight		1064 / 2.34		gr / lb			
Input Connector		MC4 ⁽⁴⁾					
	Lengths options	Input #1	Input #2				
Input Wire Length ⁽⁵⁾	(1)	(-) 0.16 / 0.52, (+) 0.16 / 0.52	(-) 0.16 / 0.52, (+) 0.16 / 0.52	m / ft			
input wire Lengths	(2)	(-) 1.6 / 5.24 , (+) 0.16 / 0.52	(-) 0.16 / 0.52 , (+) 1.6 / 5.24				
	(3) (-) 1.6 / 5.24, (+) 1.6 / 5.24 (-) 1.6 / 5.24, (+) 1.6 / 5.24						
Output Wire Type / Connector		Double Insulated; M	IC4				
Output Wire Length		2.1 / 6.8 (6)		m / ft			
Operating Temperature Range ⁽⁷⁾		-40 - +85 / -40 - +1	85	°C / °F			
Protection Rating		IP68 / NEMA6P					
Relative Humidity		0 - 100		%			

When using longer input wire length (options 2 and 3), the output wire length is 2.2m /7.2ft

For ambient temperature above +70°C / +158°F power de-rating is applied. Refer to Power Optimizers Temperature De-Rating Application Note for more details.

PV System Design Usir	ng a SolarEdge Inverter ⁽⁸⁾	Three Phase for 208V Grid ⁽⁹⁾	Three Phase for 277/480V Grid	
Minimum String Langth	Power Optimizers	8	14	
Minimum String Length	PV Modules	16	27	
Manipana Chrina Lanath	Power Optimizers	30		
Maximum String Length	PV Modules	6	0	
Maximum Power per String		7200(10)	15300 ⁽¹¹⁾	W
Parallel Strings of Different Lengths or Orientations		Ye	es	

⁽¹⁾ Rated power of the module at STC will not exceed the optimizer "Rated Input DC Power". Modules with up to +5% power tolerance are allowed.
(2) In a case of odd number of PV modules in one string, it is allowed to install one P860 power optimizer connected to one PV module. When connecting a single module to P860, seal the unused input connectors with the supplied pair of seals.

⁽³⁾ NEC 2017 requires max combined input voltage be not more than 80V.

⁽a) For other connector types please refer to: https://www.solaredge.com/sites/default/files/optimizer-input-connector-compatibility.pdf
(b) Longer inputs wire length are available for use with split junction box modules. (For option 2 order P860-xxx/xxx/Y. For option 3 order P860-xxx/xxx/Y.

⁽a) It is not allowed to mix P860 with P730/P800p/P850 in one string or to mix with P320/P340/P370/P400/P405/P505 in one string.
(b) P860 design with three phase 208V inverters is limited. Use the SolarEdge Designer for verification.
(c) For 208V grid: It is allowed to install up to 7,700W per string when the maximum power difference between each string is 1,000W
(c) For 277/480V grid: it is allowed to install up to 17,550W per string when the maximum power difference between each string is 2,000W

SMA

SUNNY TRIPOWER CORE1 33-US / 50-US / 62-US

Fully integrated

- Innovative design requires no additional racking for rooftop installation
- Integrated DC and AC disconnects and overvoltage protection
- 12 direct string inputs for reduced labor and material costs

Increased power, flexibility

- Multiple power ratings for small to large scale commercial PV installions
- Six MPP trackers for flexible stringing and maximum power production
- ShadeFix, SMA's proprietary shade management solution, optimizes at the string level

Enhanced safety, reliability

- Integrated SunSpec PLC signal for module-level rapid shutdown compliance to 2017 NEC
- Next-gen DC AFCI arc-fault protection certified to new Standard UL 1699B Ed. 1

Smart monitoring, control, service

- Advanced smart inverter grid support capabilities
- Increased ROI with SMA ennexOS cross sector energy management platform
- SMA Smart Connected proactive O&M solution reduces time spent diagnosing and servicing in the field

SUNNY TRIPOWER CORE1 33-US / 50-US / 62-US

It stands on its own

The Sunny Tripower CORE1 is the world's first free-standing PV inverter for commercial rooftops, carports, ground mount and repowering legacy solar projects. From distribution to construction to operation, the Sunny Tripower CORE1 enables logistical, material, labor and service cost reductions, and is the most versatile, cost-effective commercial solution available. Integrated SunSpec PLC for rapid shutdown and enhanced DC AFCI arc-fault protection ensure compliance to the latest safety codes and standards. With Sunny Tripower CORE1 and SMA's ennexOS cross sector energy management platform, system integrators can deliver comprehensive commercial energy solutions for increased ROI.

50000 Wp STC 330 V 800 V 33300 W 33300 VA 40 A	75000 Wp STC 1000 V 500 V 800 V 150 V 1000 V 150 V/188 V 6/2 120 A/20 A 30 A/30 A 50000 W 53000 VA 3/3-(N)-PE 480 V/277 V WYE 244 V 305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz +6Hz 1/0.0 leading 0.0 lagging <3% 97.5% • • • •/• • • • •/• • • • •/• • • • •	93750 Wp STC 550 V 800 V 62500 W 66000 VA 80 A			
330 V 800 V 33300 W 33300 VA	1000 V 500 V 800 V 150 V 1000 V 150 V/188 V 6/2 120 A/20 A 30 A/30 A 50000 W 53000 VA 3/3-{N}-PE 480 V/277 V WYE 244 V 305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz +6Hz 1/0.0 leading 0.0 lagging <3 % 97.5%	62500 W 66000 VA			
33300 W 33300 VA 40 A	500 V 800 V 150 V 1000 V 150 V/188 V 6/2 120 A/20 A 30 A/30 A 50000 W 53000 VA 3/3-{N}-PE 480 V/277 V WYE 244 V 305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz +6Hz 1/0.0 leading 0.0 lagging <3% 97.5%	62500 W 66000 VA 80 A			
33300 W 33300 VA 40 A	150 V 1000 V 150 V/188 V 6/2 120 A/20 A 30 A/30 A 50000 W 53000 VA 3/3-{N}-PE 480 V/277 V WYE 244 V 305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz +6Hz 1/0.0 leading 0.0 lagging <3% 97.5%	62500 W 66000 VA 80 A			
33300 VA 40 A	150 V/188 V 6/2 120 A/20 A 30 A/30 A 50000 W 53000 VA 3/3-{N}-PE 480 V/277 V WYE 244 V305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading0.0 lagging <3% 97.5%	66000 VA 80 A			
33300 VA 40 A	6/2 120 A/20 A 30 A/30 A 50000 W 53000 VA 3/3-{N}-PE 480 V/277 V WYE 244 V305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading0.0 lagging <3% 97.5%	66000 VA 80 A			
33300 VA 40 A	120 A/20 A 30 A / 30 A 50000 W 53000 VA 3/3-(N)-PE 480 V/277 V WYE 244 V305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading0.0 lagging <3% 97.5%	66000 VA 80 A			
33300 VA 40 A	30 A / 30 A 50000 W 53000 VA 3/3-{N}-PE 480 V/277 V WYE 244 V305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading0.0 lagging <3% 97.5%	66000 VA 80 A			
33300 VA 40 A	50000 W 53000 VA 3/3-(N)-PE 480 V/277 V WYE 244 V305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading0.0 lagging <3% 97.5%	66000 VA 80 A			
33300 VA 40 A	53000 VA 3/3-(N)-PE 480 V/277 V WYE 244 V305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading0.0 lagging <3% 97.5%	66000 VA 80 A			
33300 VA 40 A	53000 VA 3/3-(N)-PE 480 V/277 V WYE 244 V305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading0.0 lagging <3% 97.5%	66000 VA 80 A			
40 A	3/3-(N)-PE 480 V/277 V WYE 244 V305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading0.0 lagging <3% 97.5%	80 A			
	480 V / 277 V WYE 244 V 305 V 64 A 60 Hz 50 Hz, 60 Hz /- 6 Hz + 6Hz 1 / 0.0 leading 0.0 lagging <3 % 97.5%				
	244 V305 V 64 A 60 Hz 50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading 0.0 lagging <3 % 97.5%				
	64 A 60 Hz 50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading0.0 lagging <3 % 97.5%				
	60 Hz 50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading0.0 lagging <3 % 97.5% • • • • • • • • • • • • • • • • • •				
97.5%	50 Hz, 60 Hz/-6 Hz+6Hz 1/0.0 leading 0.0 lagging <3 % 97.5% • • • • • • • • • • • • • • • • • •	97.5%			
97.5%	1/0.0 leading 0.0 lagging <3 % 97.5% • • • • • • • • • • • • • • • • • •	97.5%			
97.5%	<3% 97.5% • • • • • • • • • • • • • • • • • •	97.5%			
97.5%	97.5% • • • • • • • • • • • • • • • • • •	97.5%			
97.5%	• • • • • • • • •	97.5%			
97.5%	• • • • • • • • •	97.5%			
	• • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • •				
	0/0				
	0/0				
	•				
	•				
	•				
	•				
	•				
	0/0				
	I/IV				
621 mm,	/733 mm/569 mm (24.4 in x 28.8 in :	x 22.4 in)			
	84 kg (185 lbs)				
	-25 °C+60 °C (-13 °F+140 °F)				
	-40 °C+70 °C (-40 °F+158 °F)				
	65 dB(A)				
	5 W				
	Transformerless				
Optio	iCool (forced convection, variable speed	fans)			
	Type 4X, 3SX (as per UL 50E)				
	100%				
F	Free-standing with included mounting fee	et			
	Amphenol UTX PV connectors				
Scr	rew terminals - 4 AWG to 4/0 AWG CU	J/AL			
	•				
	(2 ports)/●/○				
	●/●/●				
	•				
	•				
•/•					
•/•					
	•				
UL 1741, UL 1699B Ed. 1,	, UL 1998, CSA 22.2 107-1, PV Rapid SI	hutdown System Equipment			
	FCC Part 15 Class A				
IEEE 1547, UL 1741 SA - CA Rule 21, HECO Rule 14H					
L/HFRT,L/HVRT,Volt-VAr,	, Volt-Watt, Frequency-Watt, Ramp Rate	Control, Fixed Power Factor			
	10 years				
	15 / 20 years				
	15 / 20 years				
	Sc UL 1741, UL 1699B Ed. 1 IEEE 1	Amphenol UTX PV connectors Screw terminals - 4 AWG to 4/0 AWG CU (2 ports)/ •/O •/•/• •/• UL 1741, UL 1699B Ed. 1, UL 1998, CSA 22.2 107-1, PV Rapid SI FCC Part 15 Class A IEEE 1547, UL 1741 SA - CA Rule 21, HECO R L/HFRT, L/HVRT, Volt-VAr, Volt-Watt, Frequency-Watt, Ramp Rate			

Accessories

FRONIUS SYMO

/ Powering commercial projects that last. The Fronius Symo.

/ Featuring ten models ranging from 10 kW to 24 kW, the transformerless Fronius Symo is the ideal compact three-phase inverter for all commercial applications. The high system voltage and wide input range ensure maximum flexibility in system design. With low roof loading, NEMA 4X and 1000 V DC rating, the Fronius Symo can be mounted in many different ways, including flat on a roof or on a pole. The modern design is equipped with the SnapINverter mounting system, allowing for lightweight, secure and convenient installation. Several industry-leading features are available with the Fronius Symo including Wi-Fi®* and SunSpec Modbus interfaces for seamless monitoring and datalogging, field proven Arc Fault Circuit Interruption (AFCI), NEC 2014 compliant, and Fronius' superb online and mobile monitoring platform Fronius Solar.web.

INPUT DATA	SYMO 10.0-3 208-240	SYMO 12.0-3 208-240	SYMO 10.0-3 480	SYMO 12.5-3 480	SYMO 15.0-3 208
Recommended PV power (kWp)	8.0 - 13.0	9.5 - 15.5	8.0 - 13.0	10.0 - 16.0	12.0 - 19.5
Max. usable input current (MPPT1/MPPT 2)		25.0 A / 16.5	5 A		50.0 A
Max. usable input current total (MPPT 1 + MPPT	2)	41.5 A			50.0 A
Max. array short circuit current		37.5 A / 24.8 A			
Nominal input voltage 208	V 350 V	350 V	N/A	N/A	325 V
240	V 370 V	370 V	N/A	N/A	N/A
480	V N/A	N/A	675 V	685 V	N/A
Operating voltage range	200-600 V 200-1000 V		325-1000 V		
DC startup voltage		200 V			360 V
MPP Voltage range	300-5	600 V	300-8	800 V	325-850 V
Max. input voltage	600	600 V 1000 V			
Admissable conductor size DC	AWG 14-AWG 6 copper direct, AWG 6 aluminum direct, AWG 4-AWG 2 copper or aluminum with input combiner			input combiner	
Integrated DC string fuse holders	NA		6- and 6+		
Max (Isc) input terminal rating	33A		12A		
Number of MPPT		2			1

OUTPUT DATA		SYMO 10.0-3 208-240	SYMO 12.0-3 208-240	SYMO 10.0-3 480	SYMO 12.5-3 480	SYMO 15.0-3 208
Max. output power	208 V	9995 VA	11995 VA	NA	NA	15000 VA
	240 V	9995 VA	11995 VA	NA	NA	NA
	480 V	NA	NA	9995 VA	12495 VA	NA
Output configuration		208/2	240 V	480 V D	elta +N**	208 V
Frequency range (adjustable)				45-65 Hz		
Nominal operating frequency				60 Hz		
Admissable conductor size AC				AWG 14-AWG 6		
Total harmonic distortion		<1.5 %	<1.75	%	<1.5 %	<3.5 %
Power factor range				0-1 ind./cap.		
Max. continuous output current	208 V	27.7 A	33.3 A	NA	NA	41.6 A
	240 V	24.0 A	28.9 A	NA	NA	NA
	480 V	NA	NA	12.0 A	15.0 A	NA
OCPD/AC breaker size	208 V	35 A	45 A	NA	NA	60 A
	240 V	30 A	40 A	NA	NA	NA
	480 V	NA	NA	15 A	20 A	NA
Max. Efficiency		97.0 %	97.0 %	98.1 %	98.1 %	97.3%
CEC Efficiency	208 V	96.5 %	96.5 %	NA	NA	96.5%
	240 V	96.5 %	96.5 %	NA	NA	NA
	480 V	NA	NA	96.5 %	97.0 %	NA

TECHNICAL DATA (10.0-3 208/240, 12.0-3 208/240, 10.0-3 480, 12.5-3 480, 15.0-3 208)

GENERAL DATA	STANDARD WITH ALL FRONIUS SYMO MODELS			
Dimensions (width x height x depth)	20.1 x 28.5 x 8.9 inches			
Protection Class	NEMA 4X			
Night time consumption	< 1 W			
Inverter topology	Transformerless			
Cooling	Variable speed fan			
Installation	Indoor and outdoor installation			
Ambient operating temperature range	-40°F - + 140°F (-40 - +60°C)			
Permitted humidity	0 - 100 % (non-condensing)			
Elevation	2000 m (6562 ft) with a max. input voltage of 1000 V / 3400 m (11155 ft) with a max. input voltage of 850 V			
DC connection terminals	6x DC+ and 6x DC- screw terminals for copper (solid / stranded / fine stranded) or aluminum (solid / stranded)			
AC connection terminals	Screw terminals 14-6 AWG			
Certificates and compliance with standards	UL 1741-2010 Second Edition (incl. UL1741 Supplement SA 2016-09 for California Rule 21 and Hawaiian Electric Code Rule 14H), UL1998 (for functions: AFCI, RCMU and isolation monitoring), IEEE 1547-2003, IEEE 1547a-2014, IEEE 1547.1-2003, ANSI/IEEE C62.41, FCC Part 15 A & B, NEC 2017 Article 690, C22. 2 No. 107.1-16, UL1699B Issue 2 -2013, CSA TIL M-07 Issue 1 -2013			

GENERAL DATA	SYMO 10.0-3 208-240	SYMO 12.0-3 208-240	SYMO 10.0-3 480	SYMO 12.5-3 480	SYMO 15.0-3 208
Weight	91.9 lbs.		76.	7 lbs.	78.3 lbs.

PROTECTIVE DEVICES	STANDARD WITH ALL FRONIUS SYMO MODELS
DC reverse polarity protection	Yes
Anti islanding	Internal; in accordance with UL 1741-2010, IEEE 1547-2003 and NEC
Over temperature protection	Output power derating /Active cooling
AFCI	Yes
Rapid shutdown compliant	Yes (according to NEC 2014)
Ground Fault Protection with Isolation Monitor Interrupter	Yes
DC disconnect	Yes

INTERFACES	AVAILABLE WITH ALL FRONIUS SYMO MODELS		
USB (A socket)	Datalogging and inverter update possible via USB		
2x RS422 (RJ45 socket)	Fronius Solar Net, interface protocol		
AVAILABLE WITH THE F	RONIUS DATAMANAGER 2.0 CARD (ONLY ONE CARD REQUIRED FOR UP TO 100 INVERTERS)		
Wi-Fi/Ethernet/Serial/ Datalogger and webserver	Wireless standard 802.11 b/g/n / Fronius Solar.web, SunSpec Modbus TCP, JSON / SunSpec Modbus RTU		
6 inputs and 4 digital I/Os	Load management; signaling, multipurpose I/O		

TECHNICAL DATA (15.0-3 480, 17.5-3 480, 20.0-3 480, 22.7-3 480, 24.0-3 480)

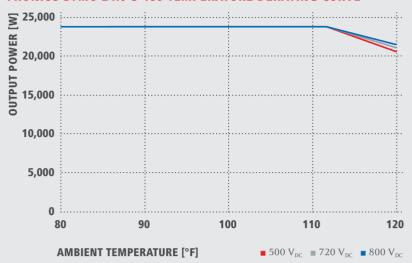
INPUT DATA		SYMO 15.0-3 480	SYMO 17.5-3 480	SYMO 20.0-3 480	SYMO 22.7-3 480	SYMO 24.0-3 480		
Recommended PV power (kWp)		12.0 – 19.5	14.0 - 23.0	16.0 - 26.0	18.0 - 29.5	19.0 - 31.0		
Max. usable input current (MPPT1/MP	PT 2)			33.0 A / 25.0 A				
Max. usable input current total (MPPT	1 + MPPT 2)			51 A				
Max. array short circuit current (MPPT	1/MPPT 2)			49.5 A / 37.5 A				
Nominal input voltage	480 V	685 V	695 V	710 V	720	V		
Operating voltage range		200-1000 V						
DC startup voltage		200 V						
MPP-voltage range		350-800 V	400-800 V	450-800 V	500-8	00 V		
Max. input voltage		1000 V						
Admissable conductor size DC		AWG 14 - AWG 6 copper direct, AWG 6 aluminum direct, AWG 4 - AWG 2 copper or aluminum with input combiner						
Integrated DC string fuse holders		NA NA 6- and 6+						
Max (Isc) input terminal rating		33A	33A	33A 12A				
Number of MPPT				2		2		

TECHNICAL DATA (15.0-3 480, 17.5-3 480, 20.0-3 480, 22.7-3 480, 24.0-3 480)

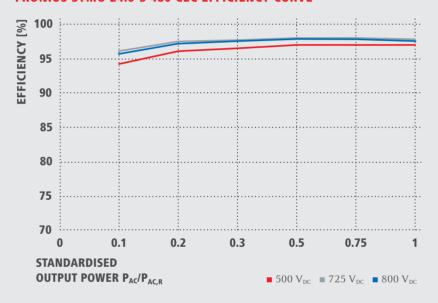
OUTPUT DATA		SYMO 15.0-3 480	SYMO 17.5-3 480	SYMO 20.0-3 480	SYMO 22.7-3 480	SYMO 24.0-3 480
Max. ouput power	480 V	14995 VA	17495 VA	19995 VA	22727 VA	23995 VA
Ouput configuration				480 V Delta +N**		
Frequency range (adjustable)		45-65 Hz				
Nominal operating frequency		60 Hz				
Admissable conductor size (AC)		AWG 14-AWG 6				
Total harmonic distortion		<1.5 % <1.25 % <1.0 % <1.25 % <1.0 %			<1.0 %	
Power factor range		0 - 1 ind./cap.				
Max. continuous output current	480 V	18.0 A	21.0 A	24.0 A	27.3 A	28.9 A
OCPD/AC breaker size	480 V	25 A	30 A	30 A	35 A	40 A
Max. Efficiency				98.0 %		
CEC Efficiency	480 V	97.0 %	97.5 %	97.5 %	97.5 %	97.5 %

TECHNICAL DATA (15.0-3 480, 17.5-3 480, 20.0-3 480, 22.7-3 480, 24.0-3 480)

GENERAL DATA	STANDARD WITH ALL FRONIUS SYMO MODELS
Dimensions (width x height x depth)	20.1 x 28.5 x 8.9 inches
Protection Class	NEMA 4X
Night time consumption	< 1 W
Inverter topology	Transformerless
Cooling	Variable speed fan
Installation	Indoor and outdoor installation
Ambient operating temperature range	-40°F - + 140 °F (-40 - +60 °C)
Permitted humidity	0 - 100 % (non-condensing)
Elevation	2000 m (6562 ft) with a max. input voltage of 1000 V / 3400 m (11155 ft) with a max. input voltage of 850 V
DC connection terminals	6x DC+ and 6x DC- screw terminals for copper (solid / stranded / fine stranded) or aluminum (solid / stranded)
AC connection terminals	Screw terminals 14-6 AWG
	UL 1741-2010 Second Edition (incl. UL1741 Supplement SA 2016-09 for California Rule 21 and Hawaiian Electric Code Rule 14H),
Certificates and compliance with standards	UL1998 (for functions: AFCI, RCMU and isolation monitoring), IEEE 1547-2003, IEEE 1547a-2014, IEEE 1547.1-2003, ANSI/IEEE C62.41,
	FCC Part 15 A & B, NEC 2017 Article 690, C22. 2 No. 107.1-16, UL1699B Issue 2 -2013, CSA TIL M-07 Issue 1 -2013


GENERAL DATA	SYMO 15.0-3 480	SYMO 17.5-3 480	SYMO 20.0-3 480	SYMO 22.7-3 480	SYMO 24.0-3 480
Weight			95.7 lbs.		

PROTECTIVE DEVICES	STANDARD WITH ALL FRONIUS SYMO MODELS
DC reverse polarity protection	Yes
Anti islanding	internal; in accordance with UL 1741-2010, IEEE 1547-2003 and NEC
Over temperature protection	Ouput power derating/Active cooling
AFCI	Yes
Rapid shutdown compliant	Yes (according to NEC 2014)
Ground Fault Protection with Isolation Monitor Interrupter	Yes
DC disconnect	Yes


INTERFACES	AVAILABLE WITH ALL FRONIUS SYMO MODELS	
USB (A socket)	Datalogging and inverter update possible via USB	
2x RS422 (RJ45 socket)	Fronius Solar Net, interface protocol	
AVAILABLE WITH THE FRONIUS DATAMANAGER 2.0 CARD (ONLY ONE CARD REQUIRED FOR UP TO 100 INVERTERS)		
Wi-Fi/Ethernet/Serial/ Datalogger and webserver	Wireless standard 802.11 b/g/n / Fronius Solar.web, SunSpec Modbus TCP, JSON / SunSpec Modbus RTU	
6 inputs and 4 digital I/Os	Load management; signaling, multipurpose I/O	

^{**+}N FOR SENSING PURPOSES - NO CURRENT CARRYING CONDUCTOR.

FRONIUS SYMO 24.0-3 480 TEMPERATURE DERATING CURVE

FRONIUS SYMO 24.0-3 480 CEC EFFICIENCY CURVE

/ Perfect Welding / Solar Energy / Perfect Charging

WE HAVE THREE DIVISIONS AND ONE PASSION: SHIFTING THE LIMITS OF POSSIBILITY.

/ Whether welding technology, photovoltaics or battery charging technology – our goal is clearly defined: to be the innovation leader. With around 3,700 employees worldwide, we shift the limits of what's possible - our record of over 800 granted patents is testimony to this. While others progress step by step, we innovate in leaps and bounds. Just as we've always done. The responsible use of our resources forms the basis of our corporate policy.

 $Further information about all Fronius \ products \ and \ our \ global \ sales \ partners \ and \ representatives \ can be found \ at \ www.fronius.com$

Fronius USA LLC 6797 Fronius Drive Portage, IN 46368 USA pv-support-usa@fronius.com www.fronius-usa.com

Racking Systems & Canopies

Flat Roof Racking Specialists

PanelClaw® is the only major racking provider in North America focused exclusively on flat roof racking. Our 11+ years of focus on flat roof result in a competitive advantage for our partners. No one knows more about flat roof racking than PanelClaw; no one delivers a more thoroughly tested and reliable platform; and no one matches our level of service. Our mission is to accelerate the deployment of flat roof PV and the best way to do this is to continue to lower its life-cycle cost while maintaining the highest levels of reliability. The clawFR platform is the result of this experience and commitment to flat roof.

Engineered for Speed

- Single M6 bold hardware kit
- No tool module attachment method
- 90 degree single-module tilt-up feature
- Flexible order of operations installation process allows for optimized coordination of building trades on the roof
- Integrated roof protection pads
- 10" plus access ways between modules
- Only 1 ground lug required per array

SYSTEM COMPONENTS

Applications

< 5° slope flat roofs (up to 7° possible w/engineering review)

Roof Type Compatibility

Membrane, tar and gravel, ballasted, BUR, concrete, asphalt (not compatible with metal roofs)

3 Shade Ratio Options

1.7:1 | 2.0:1 | 2.5:1

Platform Load

~ 2.0 - ~ 12.0 psf

Module Orientation

Landscape

Module Attachment

Airy point flange mounted

Basic Wind Speed

Up to 190 mph (>190 mph by approval)

Wind Exposure Category

B and C (D required engineering review)

USGS Seismic Categories

A, B, C, D (others require engineering review)

Building Height

No building height limitations

Corrosion Resistance

ZAM coating provides 5x better resistance than G90

Warranty and Certifications

25 year warranty

ANSI/UL 2703-2015 Listed System Fire Rating Class A with Type 1 and Type 2 modules

Intelligent Componet Design

- A single Ballast Rail part number covers all compatible 60 and 72 cell modules
- The Base does not change with module changes
- The wind deflector has 2 part numbers that cover all 72 cell module lengths
- The Module Connector and Deflector each have 2 part numbers have cover all compatible 72 cell modules

Safety and Reliability

clawFR has been tested well beyond code requirements in the US. In addition to wind tunnel testing and ANSI/UL 2703-2015 listing, we have completed a battery of reliability and performance tests which can all be found at panelclaw.com.

(978) 688.4900 | sales@panelclaw.com

panelclaw.com

O&M Features

Construction designed specifically for O&M, and to assist providers

- Recessed Deflector allows for easy access to module connections and optimizer equipment
- ZAM coating with 5x better corrosion resistance than G90
- If mechanical roof attachments are needed, they are always placed in the North/South module gaps for easy O&M inspection

Flush Mount System

Built for solar's toughest roofs.

IronRidge builds the strongest mounting system for pitched roofs in solar. Our components have been tested to the limit and proven in extreme environments, including Florida's high-velocity hurricane zones.

Our rigorous approach has led to unique structural features, such as curved rails and reinforced flashings, and is also why our products are fully certified, code compliant and backed by a 25-year warranty.

Strength Tested

All components evaluated for superior structural performance.

PE Certified

Pre-stamped engineering letters available in most states.

Class A Fire Rating

Certified to maintain the fire resistance rating of the existing roof.

Design Assistant

Online software makes it simple to create, share, and price projects.

UL 2703 Listed System

Entire system and components meet newest effective UL 2703 standard.

25-Year Warranty

Products guaranteed to be free of impairing defects.

XR Rails (

XR10 Rail

A low-profile mounting rail for regions with light snow.

- · 6' spanning capability
- · Moderate load capability
- · Clear and black finish

XR100 Rail

The ultimate residential solar mounting rail.

- 8' spanning capability
- · Heavy load capability
- · Clear and black finish

XR1000 Rail

A heavyweight mounting rail for commercial projects.

- 12' spanning capability
- · Extreme load capability
- · Clear anodized finish

Bonded Splices

All rails use internal splices for seamless connections.

- · Self-drilling screws
- · Varying versions for rails
- · Forms secure bonding

Clamps & Grounding (#)

UFOs

Universal Fastening Objects bond modules to rails.

- Fully assembled & lubed
- · Single, universal size
- · Clear and black finish

Stopper Sleeves

Snap onto the UFO to turn into a bonded end clamp.

- · Bonds modules to rails
- · Sized to match modules
- · Clear and black finish

CAMO

Bond modules to rails while staying completely hidden.

- · Universal end-cam clamp
- · Tool-less installation
- · Fully assembled

Bonding Hardware

Bond and attach XR Rails to roof attachments.

- · T & Square Bolt options
- Nut uses 7/16" socket
- · Assembled and lubricated

Attachments

FlashFoot2

Flash and mount XR Rails with superior waterproofing.

- Twist-on Cap eases install
- · Wind-driven rain tested
- · Mill and black finish

Conduit Mount

Flash and mount conduit, strut, or junction boxes.

- Twist-on Cap eases install
- Wind-driven rain tested
- Secures ¾" or 1" conduit

Knockout Tile

Replace tiles and ensure superior waterproofing.

- Flat, S, & W tile profiles
- Form-fit compression seal
- · Single-lag universal base

All Tile Hook

Mount on tile roofs with a simple, adjustable hook.

- · Works on flat, S, & W tiles
- Single-socket installation
- · Optional deck flashing

Resources

Design Assistant

Go from rough layout to fully engineered system. For free.

Go to IronRidge.com/design

Endorsed by FL Building Commission

Flush Mount is the first mounting system to receive Florida Product approval for 2017 Florida Building Code compliance.

Learn More at bit.ly/floridacert

Fixed-Tilt Ground Mount Solution | GM-2

When EPCs and project developers across the USA need dependable, low-maintenance ground mount racking, they turn to RBI Solar. As a single-source provider, we take responsibility for the Design, Engineering, Manufacturing, and Installation of PV mounting solutions. When you choose RBI Solar for your next ground mount, you're choosing peace of mind that your project is in the hands of the most trusted solar racking team in the industry.

Why choose RBI Solar?

- Professional Engineers licensed in all 50 states
- Quick response & efficient communication
- National installation capabilities
- Our in-house team members are an extension of your staff
- 85+ years manufacturing experience

- Complete turn-key process, reduction in your vendor coordination
- Company owned post driving equipment
- National project management capabilites with roaming site service personnel
- More time to focus on your business

GM-2	Sol	ution	Features

Foundation and racking design	Site wind speeds 170+ mph and ground snow loads 90+ psf
Signed and sealed drawings	Available in all 50 states
Proprietary on-site testing	Pull testing & corrosion testing - no geotechnical report required
Pre-assembled parts	Reduction in installation time
Variable slope	Accommodates slopes up to 30% (with topographic site map)
20-yr standard warranty	Proven rack reliability and bankability
G115 minimum galvanized coating	Exceeds ASTM and UL standards for 30% extended life
Driven posts	Cost-effective cee channel or I-beam post options available
Up to 24' long post driving	Ability to address challenging soils or elevate array structure
Module configurations	Portrait, landscape (all module types)
Raised purlins	Integrated bonding and grounding to UL 2703
Corrosion class	System available for all corrosion classes
Wire management and electrical	Integrated wire management solution and inverter mounting

Contact us at info@rbisolar.com or (513) 242-2051

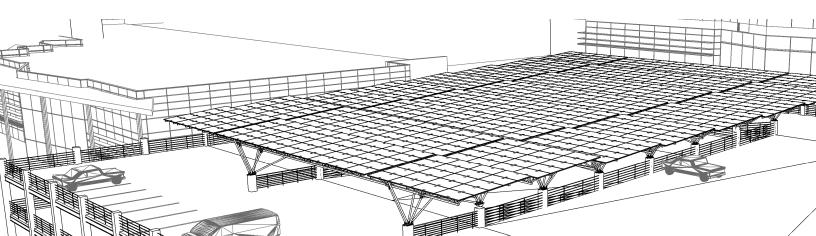
DESIGN • ENGINEERING • MANUFACTURING • INSTALLATION

6715 Steger Drive, Cincinnati, OH 45237 | 513-242-2051 | info@rbisolar.com | www.rbisolar.com

QUADPOD™ PARKING GARAGE CANOPY

FEWEST STRUCTURAL CONNECTIONS

The QuadPod Canopy is the most efficient product for the parking garage solar market, as it delivers the most kW per structural connection to the deck. The canopy is an engineered PV structure that directly connects to parking garages in a manner that dramatically reduces structural loads and moment forces when compared to traditional canopies. The benefits of the QuadPod parking garage canopy include increased structural reliability, streamlined engineering reviews and less frequent garage retrofits.


Unlike traditional solar canopies, 90% of QuadPod's construction takes place on the ground, inclusive of module and inverter wiring. After ground assembly, electrical and lighting, the canopies are lifted by crane for final installation, minimizing overhead work and optimizing worksite safety. The mechanical and electrical workers get a safer construction environment, and the incremental cost of the crane is more than made up by the efficiency gained. On-site time is half that of other canopies, typically 40 construction days per MW, reducing construction management costs, increasing throughput, and limiting disruption to parking lot operations.

The QuadPod parking garage canopy's simple span trusses cover the parking spaces and drive aisles to maximize power generation.

EFFICIENT STRUCTURAL
INTEGRATION BETWEEN
SOLAR CANOPY AND
PARKING GARAGE

UP TO 50% LABOR SAVINGS+ ONSITE EFFICIENCIES

DRIVE AISLE COVERAGE

TECHNICAL SPECIFICATIONS

Length	90'-126'
Width	18'-22.5'
Max Height	25' to top of modules
Span between foundations	50'-65'
Cantilever	10'-30'
DC Capacity	Up to 40kW/Truss
Wind Load Capacity	designed and tested for 150 mph winds
Snow Load Capacity	designed and tested for 50 psf snow
Standard steel coating	G90

TESTING/CERTIFICATIONS

Wind tunnel testing	CPP
Installation time and motion testing	Yes
UL 2703 Bonding and Grounding	ETL Intertek

OPTIONAL PACKAGES

Rain water collection	
Lighting	
Battery storage	
Inverter Mounting	
Marine environment coating	
Snow guards	

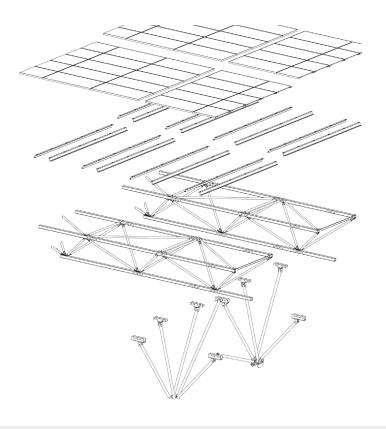
Quest Renewables creates high-value solar racking solutions that enable our customers to eliminate waste, increase value, and enter new markets.

Our commitment to optimizing the total installation process results in more satisfied developers, contractors, and site owners.

For more information, please visit www.questrenewables.com.

Made in the USA

INSTALLATION SERVICES


Structural plansets
Staging and pick plans
Stamping services in 50 states
Construction training and management
Turnkey delivery

FEATURES AND BENEFITS

less than 50% steel weight per MW
enables high density canopies over parking with fewest garage connections
three times faster installation than industry average
90% on the ground assembly
50% less labor hours

MISC

Material lead time	8 weeks
Standard Warranty	10-year
kW/Acre	430

75 5th St NW Atlanta, GA 30308 404.536.5787

